41202

B. Sc. (Pass Course) 4th Semester Examination – May, 2019

CHEMISTRY - II (Physical Chemistry)

Paper: CH-402

Time: Three hours |

[Maximum Marks : 30

Before answering the questions, candidates should ensure that they have been supplies the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, including Question
No. 1 which is compulsory. Select one question
from each Section. All questions carry equal marks.

1. Compulsory Questions:

1,1, 1, 1, 1, 1

- (a) State second law of thermodynamics.
- (b) Define residual entropy.

P. T. O.

- (c) What are reversible and irreversible cells? Give examples.
- (d) Under what conditions ΔG becomes equal to ΔA .
- (e) What are the limitations of quinhydrone electrode?
- (f) Why the efficiency of heat engine cannot be greater than one?

SECTION - A

- 2. (a) Describe Carnot cycle and derive an expression for the efficiency of a heat engine working between temperatures T₁ and T₂.
 - (b) What is the criterion of spontaneity in terms of entropy?
- 3. (a) Derive an expression for entropy as a function of V & T and P & T where V, P, T are volume, pressure and temperature respectively.
 - (b) What is the criterion of spontaneity in terms of entropy?

SECTION - B

- 4. (a) State third law of thermodynamics. How does in help in the determination of absolute entropies of chemical compounds at desire temperature?
 - (b) The free energy change (ΔG) accompanying is given process is -85.77 KJ at 25°C and -83.68 K. at 35°C. Calculate the change in enthalpy (ΔH) for the process at 30°C.
- 5. (a) Derive Gibb's Helmholtz equation.
 - (b) What is the difference between Helmholtz function and Gibb's function? Under what conditions AG becomes equal to ΔA.

SECTION - C

- (a) Derive the Nernst equation for EMF of a complete electrochemical cell.
 - (b) Write a short note on single electrode potential. 2
- 7. (a) Calculate the EMF of a Zinc-silver cell at 30°C when the activity of Zn²⁺ ions is 0.5 and the activity of Ag⁺ ions is 10. Standard reduction potential at 30°C is (i) Ag⁺/Ag = 0.799 V (ii) Zn²⁺/Zn = -00.76 V.

(3)

(b) Derive an expression for calculating mean ionic activity coefficient.
2

SECTION - D

- 8. Explain Concentration Cell (a) with transference (b) without transference. 3, 3
- (a) Discuss the application of EMF measurement in potentiometric titrations.
 - (b) Calculate the EMF of the following concentration cells T25°C. Ag|0.001N AgNO₃||0.1 N AgNO₃; assuming the activities of silver ions to be equal to the concentrations.

P. T. 0